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Abstract. In the field of robotics, forward kinematics is an activity that 

allows finding a mathematical model for the resulting position in the final 

effector based on the robot joints position, a popular alternative for de-

termining this model is defined by the Denavit Hartenberg convention, 

nevertheless, this method requires knowledge about linear algebra and 

three-dimensional spatial kinematics. Machine learning uses specific 

computational methodologies to solving similar problems in several ar-

eas, so it could be a viable answer for automatic determining of forward-

ing kinematics.  In this work we propose the use of genetic programming 

as a machine learning algorithm for finding the forward kinematics of a 

2 degrees of freedom robot, getting a satisfactory outcome obtaining a 

satisfactory result with blocks that describe the expected solution, vali-

dating the capacity of the genetic programming in order to validate this 

algorithm for later work with more complex robots. 

Keywords: forward kinematics, automatic robot modeling, linear genetic pro-

gramming. 

1 Paper Structure 

In the introduction section, a general description is presented where the problem is dis-

cussed, the proposed solution, and the scope sought. 

The related work presents all the previous investigation that supports the problem as 

an open issue, the applications that validate the genetic programming as a solution and 

its characteristics. 

In the theoretical framework, the emphasis is placed on the problem, its origin, and 

the conventional solution and then is described all the related to the proposed solution. 

The methodology presents a detailed description of the problem, as well as the solu-

tion process used, its behavior and the tests carried out. 

The results section shows the data obtained from the algorithm as well as its perfor-

mance, the validation applied to the results and the discussion about the impact of them 

with respect to those found in the literature. 

Finally, the conclusions describe the contributions, the scope of the results and the 

future work arising from it. 
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2 Introduction 

Robotics remains to be a growing research area, which has become relevant since the 

presentation of the first industrial robot in 1954 [1]. 

One of the problems present in robotics is the forward kinematics (FK onwards) 

model, which relates the positions of the joints to the Cartesian positions of the final 

effector, for which there are several deterministic methods of solution, but the problem 

requires previous knowledge in different mathematical areas, like linear algebra and 

vector spaces [2].  

Machine learning allows the solution of complex problems without the intervention 

of human beings that is why represents an alternative for solving the FK problem. Evo-

lutionary algorithms (EAs onwards) are machine learning optimizing algorithms that 

can be classified in single or multi-objective algorithms, in general, EAs algorithms 

follow specific operators which include, randomly initialized population, evaluation, 

fitness assignment, selection and reproduction (Fig. 1) [3,4]. 

  

Fig. 1. EA main operators algorithm taken from [3]. 

EAs have presented important advances in various branches of science [4–8], where 

they are presented as an alternative method to problems in which the deterministic so-

lution is not successful[9]. 

The most used EAs are Genetic algorithms (GAs onwards) and Genetic Program-

ming (GP onwards), both based on natural selection principles proposed by Charles 

Drawing, but applied in different situations. GAs perform numerical optimization on 

known structures or programs [10], on the other hand, GP performs structural optimi-

zation on unknown structures or programs allowing to determine mathematical models, 

like those required in FK. [3,11]. 

EAs have been used for various problems in robotics[12], such as tracking people 

[13], making decisions robots according to their urgency [14], among others, but ge-

netic algorithms are restricted to numerical optimization for known structures [15], 

Therefore FK cannot be applied directly with GAs, because whit that solution the trans-

formation matrix must be determined for each given position which would require high 

computational power. Nevertheless, if mathematical equations in those matrixes are 

determined instead of those numbers then the solution model would be found with GP 

as an optimizing algorithm but only requiring one initial run [16]. 
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2.1 Related Works 

In recent years FK problem has been studied by different methodologies, some of which 

use geometric analysis to find a simple solution applied to parallel robots [17], and with 

this technique, they look for solutions for anthropomorphic mechatronic systems where 

are used 4x4 matrixes that work as operators for solving FK problem [18]. 

Other investigations show models that are based on the length of the links for trans-

mitting the movement in a hybrid robot [19] and using this research in [20] models are 

explored based on flexible robots which are not considered in the aforementioned con-

vention. 

Another tool used is the quaternions, which use an extension of the real numbers and 

for this case allow to describe the movement of the coordinates along a kinematic 

chain [21].   

On the other hand, there is the use of computational tools, which have been explored 

less frequently, within the highlighted works an hybrid algorithm was used between the 

search with particle swarming and a differential evolution applied to solve FK problem 

with remote manipulators [22]. 

Likewise, the use of neural networks has been recurrent for autonomous FK solution, 

like when applying complex networks to solve FK with parallel robots in [23], and 

redundant robots in [24]. 

In the case of GAs, they have been applied with hybrid processes that take advantage 

of other algorithms. GAs have been tested working in conjunction with simulated an-

nealing in [25] and have been used with geometric similarities for optimizing its nu-

merical parameters [26]. 

In this work, it is proposed to find the Denavit Hartenberg (DH onwards) parameters 

with mathematical expressions obtained with a GP algorithm in a robot with 2 degrees 

of freedom.  

3 Theoretical Framework 

Kinematics is the branch of physics that analyzes movements without considering the 

forces that cause them [27]; applied to a robot, the kinematic models describe the rela-

tionship between each of the robot joints and its final actuator position [2], where it is 

possible to determine FK forward or backward depending from if the final actuator 

position is found or the joints position respectively. 

3.1 Forward Kinematics 

Forward kinematics is the mathematical model that relates the known positions of each 

of the joints and their relationship with the Cartesian axes [2]. 

The DH convention describes the behavior of the 
i

l  link with respect to the 1i
l

−
 

link, with 4 important transformations described with the below parameters [28]. 

• ϴi, angle of the joint, with which the orthogonal plane is projected with respect to 

the normal anterior plane. 

• di, displacement of the joint, length between the links with respect to their joints. 
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• ai, length of the link between the common perpendiculars. 

• αi, torsion angle between the orthogonal projections of the Z axis in a perpendicular 

plane. 

The homogeneous matrix that represents those 4 transformations previous parame-

ters is shown in equation (1): 

 �10 = �cos (�) −���(�) ���(�) � ∗ cos (�)���(�) cos (�) −cos (�) � ∗ ���(�)0 ���(�) cos (�) �0 0 0 1 �. (1) 

 Following the DH rules are possible to find a transformation matrix that contains 

the equations that describe the position and orientation of the robots in its final effector 

with respect to the values given by its joints [1]. 

3.2 Linear Genetic Programming  

This algorithm is considered within the meta-heuristics, since it is an EA that performs 

a soft search to determine the structure that contains a possible solution [29]. 

The form of work proposed is that described in Algorithm 1, which specifies the 

evolutionary cycle that allows a population of possible responses to interact to generate 

an increasingly better-adapted offspring to the given problem. 

GP Program (Best Individual) 

  Initial values; 

  Begin 

    Start_population(); 

    Evaluate_aptitude(); 

    Repeat 

      Select(); 

      Cross(); 

      Evaluate_aptitude(); 

      Mutation(); 

      Evaluate_aptitude(); 

    Until aptitude = Expected OR End_generations 

End. 

Algorithm 1. Fitness evaluation algorithm. 

Population randomly initialized generates possible individuals, which are evaluated 

in the problem to be solved, once the cycle has begun, the individuals who may have 

children in each generation are selected, the children are created from the parents and 

in some cases have mutations, finally the cycle is evaluated and repeated until the de-

sired fitness value is reached, or the desired generations are achieved [30]. 
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4 Methodology 

This section explains how the GP tool was built and the problem of finding DH param-

eters for a robot automatically and how the proximity to the expected result was evalu-

ated. 

4.1 Design of Experiment 

For this work, a 2-degree freedom planar robot with two rotational joints is used, its 

schematic is shown in Fig. 2. 

 

Fig. 2. Planar robot diagram. 

It was decided to make use of this robot for its ease and because the search method 

used has no precedent, it was initialized with a known robot, which, by modifying any 

of its joints, moves its final effector along the x and y axes. 

For simulation MATLAB 2015b was used since the algorithm was worked as a test, 

for the moment no special command was used, everything was worked with struc-

tured  code. 

4.2 Objective Function 

In order to evaluate the suitability of the individuals in FK, the results of the GP were 

taken and placed in a 2x4 matrix and used to assemble the transformation function ac-

cording to the DH rules, taking the first column in the matrix as the joint angle, the 

second as the joint displacement, the third as the link size and the last of them as the 

angle between the z-axis projection and the next plane. 

These values were evaluated in a robot of 300 and 400 cm per link in the position of 

3

π
  and 

4

π   in each joint respectively, the positions selected here considered that the 

size of the operation could not exchange its values, in addition to working within the 

first quadrant of work, thus accumulating the absolute value of the sub-traction between 

the known solution of this robot following the DH convention and those obtained by 

the GP as is shown at equation (2). 

         Error =  abs(XDH −  XGP ) �  abs(YDH −  YGP ) �  abs(ZDH −  ZGP ).  (2) 
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4.3 GP Algorithm 

This algorithm was executed with the initial conditions described in Table 1, which 

were selected according to the suggested rules in the literature, where decisions are 

made for increasing or decreasing each term based on the results obtained and its be-

havior [30]. 

Table 1. Initial values of GP. 

Initial condition Value 

Seed 1 

Population size 200 individuals 

Genes number 8 

Alleles number 4 

Tournament size 3 

Generations 1500 

Mutation percentage 10% 

Mutation numbers 1800 

Mutations per generation 12 

 

After this a basic GP code was assembled following algorithm 1, where individuals 

with 8 blocks were used each block describing a DH parameter in the table, those blocks 

are functions of 
i

q   and 
i

l  having the structure shown in equation (2): 

 ( , )
i i i

B f q l= . (3) 

These blocks are assembled into a 2 x 4 matrix and subtracted against the previously 

found DH parameter matrix. 

5 Results 

First of all, the DH parameters were obtained following the rules that this convention 

requires, in this way the results shown by the algorithm will be confirmed. In this way, 

the parameters of Table 2 were obtained.  

Table 2. Planar robot DH parameters. 

Transformation  ϴ d a α 

0

1A   1q   0   
1l   0   

1

2A   2q   0   
2l   0   
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The parameters obtained were simulated to visualize the behavior of the robot, 

and to obtain the graph shown in Fig. 3. Where an angle was used in the first joint 

of 
3

π
  and in the second joint with

4

π
. 

 

Fig. 3. Planar robot graph. 

The next step was to take the results of the GP, which formed the matrix shown in 

Table 3. These have a larger number of parameters, as this algorithm required more 

space to increase the search diversity. 

Table 3. Best element obtained by the GP. 

Transformation  ϴ d a α 

0

1A  1

2

2
q

l
+  0  1

1l −  
2

3
1

l
−

 

1

2A  
2

q  
2

2

l

 
2l  0  

 

All the solutions as expected have good fitness i.e. equations satisfy FK, but the 

representation shown by the result requires to be cleaned or that unused extra data be 

simplified, as was presented at the literature, all the results take the structure to where 

the correct data is [29]. 

The graph shown in Fig. 4 shows the position of the robot at the angles mentioned 

above, where the similarity between the positions obtained can be seen. 
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Fig. 4. Planar robot graph obtained by the GP. 

The evolution of fitness of the GP can be seen in Fig. 5, which shows a desired 

behavior that favors the search for the correct result. 

 

Fig. 5. Population fitness. 

At the same time, Fig. 6 shows the best and worst element, where the difference 

between the two shows the diversity of the population, which disappears when it 

reaches the best value found. 

 

Fig. 6. Behavior of diversity. 
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The results shown above are only visual, but in order to corroborate mathematically 

the results, the equation (4) shows the expected evaluated matrix for the planar robot 

when substituting the links 1 300l =   and 2 400l = , and joints value with 
1

3
q

π
=   

and 
2

4
q

π
= : 

 #$ = %1.0672 0 100 0
0.7854 0 100 0,. (4) 

In comparison with the equation (4), the equation (5) shows the GP algorithm solu-

tion in the robot using same values of equation (4) for links and joints, it can be seen 

that most of them are similar, in addition to the symbolic results are shown: 

#$-. = %1.0672 0 99 0.97
0.7854 0.02 100 0 ,. (5) 

6 Conclusion  

The relative error in the GP result is over 6.57%, this error comparing with the neuronal 

network develop is higher [23], [24], where the error has a 6% of difference, the same 

case happened using a PSO algorithm [25], with a 6.5% of error, that gets a lower dif-

ference in the absolute error but have an increase in execution time because the PSO 

use 0.5 milliseconds less by execution, finally the genetic algorithm [26] just have a 

4% of error. The performance of GP is lower because the kind of algorithm used opti-

mizes structure but not numerical parameters, i.e.  GP is a soft search that just finds 

how the answer looks like and giving a really close approximation comparing to other 

three optimization algorithms, however if numerical parameters are optimized using 

other numerical optimization algorithm the solution could be improved over 

other  works. 

In this way it can be concluded that the problem posed by the introduction has a 

solution by the method selected, and that there is a result achievable by the GP for this 

problem, but numerical parameters must be optimized after that and structural solution 

is obtained. 

The above mentioned gives rise to continuing to work on the search for the model 

and to generalize it, as well as to propose a solution to mathematically complex struc-

tures as preliminary results, the aim is to be able to add to the algorithm presented an 

automatic optimization process, this to compensate for the limitations of the GP; the 

code will be adapted to work parallel to the cycles reducing the execution time; tests 

will be carried out, which include the use of a redundant parallel robot that is the main 

problem of the FK; once satisfactory results have been found in the structural solution 

other numerical optimizing algorithm must be used for optimizing numerical parame-

ters in the obtained structure, after that,  the problem of inverse kinematics will be tack-

led, with the aim of finding a general computational method for the mathematical mod-

els of the robot. 
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